

Preprint. 4th ICHE, Sep. 26-29, 2000, Seoul, Korea.

 - 1 -

Implementation of A Java-Based Graphical User Interface for GSTARS 2.1

Francisco J. M. Simões1, David Patterson2, and Chih Ted Yang3

Abstract

In this paper we summarize the approach and methodology behind the development of a
graphical user interface (GUI) for GSTARS 2.1. GSTARS 2.1 is a numerical model for the
simulation of flow and sedimentation in large alluvial rivers, and is the most recent version of an
archetype command line program that communicates with the user by means of ASCII files with
a rigid format. The interface developed, using the Java programming language, wraps the
program in a new graphical and interactive user environment without the need to change any of
the original numerical code, allowing the re-use of legacy code.

Keywords: numerical model, GUI, graphical user interface, Java, alluvial river simulation.

1 US Bureau of Reclamation, Sedimentation and River Hydraulics Group (D-8540), P.O. Box
25007, Denver, CO 80225, USA.
2 Colorado State University, Integrated Decision Support Group, 601 Howes Street, University
Services Building, Room 410, Ft. Collins, CO 80523, USA.
3 US Bureau of Reclamation, Sedimentation and River Hydraulics Group (D-8540), P.O. Box
25007, Denver, CO 80225, USA

1. Introduction

The weight of legacy codes is still an important consideration in the development of new
applications in hydraulics. The thousands of lines of code usually needed even in relatively small
applications are many times still intermingled by code developed many years earlier. Moreover,
the need to retain some compatibility with old data files puts an additional burden in the
development of new versions of codes that were first written when the alphanumeric 25-line by
80-column terminal was the state-of-the-art. However, current demands on applications require
friendly environments based on graphical user interfaces, usually integrated in networked
solutions that are platform-independent. In this paper we present our approach to make both
paradigms coexist.

GSTARS is a program implementing a hydraulics and sediment transport model for the
simulation of large alluvial rivers. It was first released in 1986 (Molinas and Yang, 1986) and
was written in a mix of FORTRAN 77 and the older FORTRAN IV programming languages.
The code was developed for mainframe computers and used a rigid input/output (I/O) structure
based on ASCII files with sequential, fixed-width fields. All data post-processing was
accomplished using text editors, spreadsheets, and other third-party programs, a solution that was
far from efficient but that represents well the practice at the time.

Preprint. 4th ICHE, Sep. 26-29, 2000, Seoul, Korea.

 - 2 -

More recently, an updated and improved version of the code, GSTARS 2.0 (Yang et al.,
1998) was released. This newer release incorporated improvements in the mathematical models
and numerical engine, but for the most part left unattended the I/O system, which remained
based on sequential, fixed-width record, ASCII files. (A number of basic graphing programs for
data post-processing are included in the GSTARS 2.0 distribution package.)

The present effort for the newest release of the code, GSTARS 2.1, is concentrated on the
I/O system. Although some changes were made to the numerical engine — i.e., to the
FORTRAN code that implements the mathematical model — such as adding side discharges by
tributaries and bug fixes, these represent only a minor portion of the overall GSTARS 2.1 code
development.

2. The Numerical Engine

GSTARS 2.1 (Yang and Simões, 2000) is a numerical model for the simulation of the in-channel
sedimentation processes in large (wide) alluvial rivers. The backwater model is based on an
improved version of the one-dimensional algorithm of Molinas and Yang (1986), and can
compute mixed flow regimes (subcritical, supercritical, and mixed flows — see Figure 1).

0

5

10

15

20

0 1000 2000 3000

E
le

va
ti

o
n

 (
ft

)

Distance from outlet (ft)

Figure 1. GSTARS 2.1 simulation and analytic solution in a channel with trapezoidal cross
section (MacDonald e al., 1997). The flow is subcritical in the first and last thirds of the channel,
and supercritical in the middle, with a visible hydraulic jump. The thick line is the channel’s bed,
the thin line is the analytic free-surface, and the circles denote the computed solutions at the
computational cross sections.

GSTARS 2.1 is a quasi-steady model, in which the water discharge hydrograph is

approximated by bursts of constant discharge. Sediment routing is decoupled from the backwater
computations and can be accomplished with a different time step size. Exener’s equation is used
to rout the sediments in a semi-two-dimensional manner, based on the stream tube concept. Each
cross section is divided in regions of equal conveyance, and sediment is routed through each
region (stream tube) independently — see Figure 2. Although each stream tube has the same
discharge, in general they will have different cross-sectional areas and, therefore, different
average velocity. Carrying capacities, bed sorting, and fractional transport are computed
independently in each stream tube, and stream tube boundary locations are recalculated after
each time step.

Preprint. 4th ICHE, Sep. 26-29, 2000, Seoul, Korea.

 - 3 -

The model incorporates different methods of transport, ranging from clay to silt, sand, and
gravel. Non-equilibrium sediment transport and bank stability analysis are some of the optional
features included. The sediment continuity equation can be applied to both the bed and the banks
of the river channel. Channel width changes are computed based on the theory of total stream
power minimization. A more detailed description of the model can be found in Yang and Simões
(2000).

Figure 2. Representation of the use of stream tubes in GSTARS 2.1. The discharge is the same
in all stream tubes, i.e., q1 = q2 = q3. However, because of different roughness and cross sectional
areas, A, the velocity V = q/A will vary along each stream tube and within each cross section. For
example, for cross section B, 1 2 3A A A≠ ≠ , therefore 1 2 3V V V≠ ≠ , where the subscripts refer to

stream tube number. Similarly, within the same stream tube A BA A≠ , therefore A BV V≠ , where
now the subscripts refer to the cross section.

3. Graphical User Interface

3.1 Approach

The GSTARS 2.1 numerical engine has a standard command line interface, communicating with
the user using static files: the input files are prepared, the program is executed using the
information contained in those files and, upon completion and normal termination, a number of
output files are produced. A new run of the program involves the preparation of a new input file
and the creation of more output files by the program. The approach taken in the development of a
new I/O system for the program maintains that basic process, but encapsulates it within a new
interface layer. This layer provides the graphical and interactive environment to prepare the input
file required for model execution, and processes the output information for graphical display of
results.

During execution of the numerical code, some informational messages are printed in the
standard output device, such as the status of the run (percentage of computations completed) and
any runtime error messages that may occur. Those messages are also passed directly to the
graphical user interface (GUI) and displayed in real time. This is accomplished by a basic
message-passing mechanism that captures all the intermediary ASCII output produced by the
numerical engine (a one-way communication path).

The approach chosen is schematically represented in Figure 3. It is very common in the
development of similar types of application. From our point of view, there are two main

Preprint. 4th ICHE, Sep. 26-29, 2000, Seoul, Korea.

 - 4 -

advantages to it. First, it allows the existing code to remain untouched. Indeed, in the GSTARS
2.1 release, the user still has the capability of generating the input files using an ASCII text
editor end executing the program using the command line, bypassing entirely the GUI. The user
retains full access to the input and output data files, which may be useful for importing selective
data to/from other applications, such as spreadsheets or CAD programs.

The other important advantage resides in the possibility of reusing the code for other
models. Although developed specifically to accommodate the needs of GSTARS 2.1, the main
GUI code can be easily modified and expanded for other numerical models. For example, to use
the same GUI for the HEC-6 model (USACE, 1993), most of the work would consist in
modifying the modules that read and write the ASCII files used to communicate with the
numerical model. Of course that, since HEC-6 has different capabilities from GSTARS 2.1,
some additional work would be required to include them in the GUI’s input screens.
Nevertheless, this approach makes it easy to use the same GUI code in future model
developments, as well as for existing legacy codes based on standard command line interfaces.

Figure 3. Basic architecture followed in the development of the graphical user interface for
GSTARS 2.1.

3.2 Methodology

As described in the previous sections, the GSTARS 2.1 graphical interface is a separate
component to the model that functions as pre- and post-processor. Sun’s Java (see
www.javasoft.com) was the programming language chosen. The primary advantage of using
Java is that it has been designed to run on multiple operating systems, including Microsoft
Windows (95/98/NT) and Linux. Currently, the interface runs only as an application and not as
an applet†, but after further development there is the possibility of running the interface as an
applet in a web browser, which could simplify the distribution of the interface software. Java
also has a set of functions for connecting to local or networked databases, which could be
another important consideration in future development.

† An applet is a program designed to be executed from within another application. Unlike an
application, applets cannot be executed directly from the operating system, but a well-designed
applet can be invoked from many different applications.

Preprint. 4th ICHE, Sep. 26-29, 2000, Seoul, Korea.

 - 5 -

The interface was broken into two modules: the graphical user interface dialogs and the
controller. The graphical user interface dialogs, which form the physical part of the GUI, were
designed using IBM's Visual Age for Java integrated development environment (see
www.ibm.com/software/ad/vajava). Using a graphical design board, buttons and other user
interface elements are laid out, allowing for rapid prototyping and development. When the user is
happy with the appearance of a component, the compiler can output it as a Java class, complete
with hooks to each of the component’s text fields and buttons (see Figure 4).

Figure 4. Layout and design of the sediment transport dialog in VisualAge for Java. Using this
editor, human-readable Java code that creates and positions the labels, tabs, and text fields of the
dialog can be generated.

The controller, which is the code that gives functionality to the GUI dialogs, was written

using JPython. JPython is a scripting language written in Java (see www.jpython.com). Where
Java is a statically-typed language similar to C++, JPython is an object oriented, dynamically-
typed language, and contains native high-level data structures such as lists and dictionaries. This
allows for faster development and reduces the number of lines of code, making maintenance
easier. Of course, such a system is not without its drawbacks, which include the additional

Preprint. 4th ICHE, Sep. 26-29, 2000, Seoul, Korea.

 - 6 -

overhead involved with translating JPython code to the equivalent Java. The distribution of the
interface is also more complex because of the JPython libraries that need to be installed. The
controller functions by subclassing (extending) the dialog components that were written in Java.
These JPython classes provide the implementation of each of the buttons, menus, and other
interface elements.

A third-party Java class, PtPlot 3.1, was used to perform the graphing functions of the
interface (see Ptolemy.eecs.Berkeley.edu/java/ptplot3.1/Ptolemy/plot/doc). While powerful in its
own right, a major consideration was that the source code was available. This allows the
programmer to easily make modifications without having to worry about copyright issues or
waiting for the needed feature to come along in a future development.

4. Concluding Remarks

At the writing of this paper (May 2000), the GUI was in advanced stage of development and it
was running successfully on PC workstations with Windows 98 (see Figure 5) with most of its
functionality. The final release will be available to the public with distributions for Windows
95/98 and NT, with a Linux distribution also planned for later.

The GUI successfully read all of the existing data files prepared for GSTARS 2.0 (versions
of the model older than 2.0 are no longer supported by the US Bureau of Reclamation). Both the
model input and output files can be imported to the GUI, which means that existing data can be
analyzed with this tool without the need to rerun the model. This is particularly important for
archived project data in the cases for which the model input data files can no longer be found.

Testing of the GUI has been carried out on a Pentium II CPU at 333 MHz (8 Mbytes
graphics card) and on a Pentium III at 550 MHz (16 Mbytes graphics card), both with 250
Mbytes of RAM. Although the GUI performed almost equally well on both machines, some
performance issues remain to be solved at this time. The most important is the system slow down
observed when a background image is used as a template in the main graphics window (the GUI
allows the user to work over an image, such as an aerial photograph or a digitized map).
However, since this is a cosmetic feature that is not essential for the proper function of the GUI,
it will not interfere with the development of the remaining aspects of the interface.

The GUI, GSTARS 2.1 numerical model, manual, and other accompanying files will be
placed for free download on the Web. Interested readers should point their browsers to
www.usbr.gov/srhg/ and follow the links therein.

References

MacDonald, I., Baines, M.J., Nichols, N.K., and Samuels, P.G., “Analytic Benchmark Solutions

for Open-Channel Flows,” J. Hydr. Engng. ASCE 123(11), pp. 1041-1045, 1997.
Molinas, A., and Yang, C.T., “Generalized Water Surface Profile Computation,”, J. Hydr.

Engng. ASCE 11(3), pp. 381-397, 1985.
Molinas, A., and Yang, C.T., “Computer Program User’s Manual for GSTARS (Generalized

Stream Tube model for Alluvial River Simulation),” US Dept. of the Interior, Bureau of
Reclamation, Technical Service Center, Denver, CO, 1986.

Preprint. 4th ICHE, Sep. 26-29, 2000, Seoul, Korea.

 - 7 -

Figure 5. Screen capture of the GSTARS 2.1 users graphical interface showing a river segment
being prepared for model run. The panels to the right show the selected cross section geometry,
bed particle size gradation, and other cross-sectional parameters used by the model. The
numerical grid is shown on the straight line, which is being displayed over a rasterized schematic
map of the region being studied.

USACE, “HEC-6 Scour and Deposition in Rivers and Reservoirs,” User’s Manual, U.S. Army

Corps of Engineers, Hydrologic Engineering Center, 1993.
Yang, C.T., and Simões, F.J.M., “User’s Manual for GSTARS 2.1 (Generalized Stream Tube

model for Alluvial River Simulation version 2.1),” US Dept. of the Interior, Bureau of
Reclamation, Technical Service Center, Denver, CO, 2000. (To appear.)

Yang, C.T., Treviño, M.A., and Simões, F.J.M., “User’s Manual for GSTARS 2.0 (Generalized
Stream Tube model for Alluvial River Simulation version 2.0),” US Dept. of the Interior,
Bureau of Reclamation, Technical Service Center, Denver, CO, 1998.

